Разновидности систем искусственного заземления
Электроустановки в отношении мер электробезопасности разделяются на:
- электроустановки напряжением выше 1 кВ в сетях с глухозаземленной или эффективно заземленной нейтралью;
- электроустановки напряжением выше 1 кВ в сетях с изолированной или заземленной через дугогасящий реактор или резистор нейтралью;
- электроустановки напряжением до 1 кВ в сетях с глухозаземленной нейтралью;
- электроустановки напряжением до 1 кВ в сетях с изолированной нейтралью.
В зависимости от технических особенностей электроустановки и снабжающих электросетей, её эксплуатация может требовать различных систем заземления. Как правило, перед проектировкой электроустановки, сбытовая организация выдаёт перечень технических условий, в которых оговаривается используемая система заземления.
Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C, TN-S, TN-C-S,TT, IT.
Для электроустановок напряжением до 1 кВ приняты следующие обозначения:
- система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;
- система TN-С — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем её протяжении;
- система TN-S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем её протяжении;
- система TN-C-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то её части, начиная от источника питания;
- система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены;
- система ТТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.
Первая буква — состояние нейтрали источника питания относительно земли
- Т — заземленная нейтраль (лат. terra);
- I — изолированная нейтраль (англ. insulation).
Вторая буква — состояние открытых проводящих частей относительно земли
- Т — открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
- N — открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.
Последующие (после N) буквы — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников
- S — нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены (англ. separated);
- С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник) (англ. combined);
- N — нулевой рабочий (нейтральный) проводник; (англ. neutral)
- РЕ — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов)(англ. Protective Earth)
- PEN — совмещенный нулевой защитный и нулевой рабочий проводники (англ. Protective Earth and Neutral).
Системы с глухозаземлённой нейтралью (TN-системы).
Системы с глухозаземлённой нейтралью принято называть TN-системами, так как данная аббревиатура происходит от фр. Terre-Neutral, что означает «земля-нейтраль».
Рис. 1. Принципиальная схема системы TN-C , в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении
Cхема наиболее часто встречающаяся в домах старой постройки ,где:
- 1 – заземлитель нейтрали (средней точки) источника питания;
- 2 – открытые проводящие части;
- N – нулевой рабочий (нейтральный) проводник;
- PEN – совмещенный нулевой защитный и нулевой рабочий проводники.
Рис. 2. Принципиальная схема системы TN-S, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении, где:
- 1 – заземлитель нейтрали (средней точки) источника питания;
- 2 – открытые проводящие части;
- N – нулевой рабочий (нейтральный) проводник;
- PE – защитный проводник
Рис. 3. Принципиальная схема системы TN-C-S - система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания где:
- 1 – заземлитель нейтрали (средней точки) источника питания;
- 2 – открытые проводящие части;
- N – нулевой рабочий (нейтральный) проводник;
- PE – защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов
- PEN – совмещенный нулевой защитный и нулевой рабочий проводники
Система TN-C
Система TN-C (фр. Terre-Neutre-Combiné) предложена немецким концерном AEG в 1913 году. Рабочий ноль и PE-проводник (англ. Protection Earth) в этой системе совмещены в один провод. Самым большим недостатком была возможность появления линейного напряжения на корпусах электроустановок при аварийном обрывенуля. Несмотря на это, данная система все ещё встречается в постройках стран бывшего СССР. Из современных электроустановок, такая система встречается только в уличном освещении из соображений экономии и пониженного риска.
Система TN-S
Система TN-S (фр. Terre-Neutre-Séparé) была разработана на замену условно опасной системы TN-C в 1930-х годах. Рабочий и защитный ноль разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа основывается на законах Кирхгофа, согласно которым текущий по рабочему нулю ток должен быть численно равным геометрической сумме токов в фазах.
- Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако, в случае обрыва нулевого провода до точки разделения, корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.
Система TN-C-S
В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токопроводящих частей с землёй и наглухо заземлённую нейтраль. Для обеспечения связи на участке трансформаторная подстанция — ввод в здание применяется совмещённый нулевой рабочий(N) и защитный проводник(PE) принимающий обозначение PEN. При вводе в здание он (PEN) разделяется на отдельный нулевой (N) и защитный проводник (PE).
- Достоинства: более простое устройство молниезащиты (невозможно появление пика напряжения между PE и N), возможность защиты от КЗ фазы на корпус прибора с помощью обыкновенных «автоматов».
- Недостатки: крайне слабая защищенность от «отгорания нуля», то есть разрушения PEN по пути от КТП к точке разделения. В этом случае на шине PE со стороны потребителя появляется фазное напряжение, которое не может быть отключено никакой автоматикой (PE не подлежит отключению). Если внутри здания защитой от этого служит СУП (под напряжением оказывается все металлическое, и нет риска поражения током при прикосновении к 2 разным предметам), то на открытом воздухе никакой защиты от этого не существует вовсе.
В соответствии с ПУЭ является основной и рекомендуемой системой, но при этом ПУЭ требуют соблюдения ряда мер по недопущению разрушения PEN — механической защиты PEN, а также повторных заземлений PEN воздушной линии по столбам через какое-то расстояние (не более 200 метров для районов с числом грозовых часов в году до 40, 100 метров для районов с числом грозовых часов в году более 40).
В случае, когда эти меры соблюсти невозможно, ПУЭ рекомендуют TT. Также ТТ рекомендуется для всех установок под открытым небом (сараи, веранды и т. д.)
В городских зданиях шиной PEN обычно является толстая металлическая рама, вертикально идущая через все здание. Её практически невозможно разрушить, потому в городских зданиях применяется TN-C-S.
В сельской же местности в России на практике существует огромное количество воздушных линий без механической защиты PEN и повторных заземлений. Потому в сельской местности более популярна система TT.
В позднесоветской городской застройке как правило применялась TN-C-S с точкой деления на основе электрощита (PEN) рядом со счетчиком, при этом PE проводилась только для электроплиты.
В современной российской застройке применяется и «пятипроводка» с точкой деления в подвале, в стояках проходят уже независимые N и PE.
Система TT
Рис. 4. Принципиальная схема системы TT (вариант 1), где
- 1 – заземлитель нейтрали (средней точки) источника питания;
- 2 – открытые проводящие части;
- 3 – заземлитель открытых проводящих частей;
- N – нулевой рабочий (нейтральный) проводник;
- PE – защитный проводник.
Рис. 5. Принципиальная схема системы ТТ (вариант 2), где
- 1 – заземлитель нейтрали (средней точки) источника питания;
- 2 – открытые проводящие части;
- 3 – заземлитель открытых проводящих частей;
- PE – защитный проводник
В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически не зависимый от заземлителя нейтрали трансформаторной подстанции.
- Достоинства: высокая устойчивость к разрушению N по пути от ТП к потребителю. Это разрушение никак не влияет на PE.
- Недостатки: требования более сложной молниезащиты (возможность появления пика между N и PE), а также невозможность для обычного автоматического выключателя отследить КЗ фазы на корпус прибора (и далее на PE). Это происходит из-за довольно заметного (30-40 Ом) сопротивления местного заземления.
В силу вышеперечисленного ПУЭ рекомендуют ТТ только как «дополнительную» систему (при условии, что подводящая линия не удовлетворяет требования TN-C-S по повторному заземлению и механической защите PEN), а также в установках на открытом воздухе, где есть риск одновременного соприкосновения с установкой и с физической землей (или же физически заземленными металлическими элементами).
Тем не менее, ввиду низкого качества большинства воздушных линий в сельской местности России, система TT там крайне популярна.
ТТ требует обязательного применения УЗО. Обычно устанавливают вводное УЗО уставкой 300—100 мА, которое отслеживает КЗ между фазой и PE, а за ним — персональные УЗО для конкретных цепей на 30-10 мА для защиты людей от поражения током.
Молниезащитные устройства, такие, как ABB OVR, различаются по конструкции для систем TN-C-S и TT, в последних установлен газовый разрядник между N и PE и варисторы между N и фазами.
Системы с изолированной нейтралью . Система IT.
Рис. 6. Принципиальная схема системы IT - система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены где:
- 1 – сопротивление заземления нейтрали источника питания (если имеется);
- 2 – заземлитель;
- 3 – открытые проводящие части;
- 4 – заземляющее устройство;
- PE – защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов).
Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения, к которым предъявляются повышенные требования надёжности и безопасности, например в больницах для аварийного электроснабжения и освещения.
Подробные консультации и стоимость услуг Вы можете получить , связавшись с нами:
- тел/факс: (8212)21-30-20